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Abstract. We examine some promising photonic structures for collecting and
guiding light in bulk diamond. The aim of this work is to optimize single photon
sources and single spin read-out from diamond color centers, specifically NV−

centers. We review the modeling and fabrication (by focused ion beam and
reactive ion etching) of solid immersion lenses, waveguides and photonic crystal
cavities in monolithic diamond.
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1. Introduction

Diamond has emerged in recent years as a unique platform for quantum communication [1] and
spin qubit operations [2, 3], as well as for ‘quantum imaging’ based on single spin magnetic
resonance [4] or nanoscopy [5]. Impressive demonstrations in all these areas have mostly
been based on the negatively charged nitrogen vacancy center (NV−), which consists of a
substitutional nitrogen atom adjacent to a carbon vacancy. Due to its exceptional optical and
magnetic spin selection properties, NV− has been used to demonstrate a stable single photon
source [6] and single spin manipulations [7]–[9] at room temperature. A single photon source
based on NV− in nano-diamond is already commercially available [10], and a ground state spin
coherence time of 15 ms has been observed in ultra-pure diamond at room temperature [11]. At
present, one of the biggest issues preventing diamond from taking the lead among competing
technologies (e.g. quantum dots [12]) is the difficulty in fabricating photonic devices to couple
and guide light. This is due to the extreme hardness, high refractive index and poor electrical
conductivity of diamond. For the realization of large-scale quantum information processing
protocols (e.g. via photonic module approaches [13]) or for quantum repeater systems, it will
be necessary to connect NV− centers through ‘flying’ qubits such as photons. To achieve
this, micro-cavities and waveguides are needed to enable the transfer of quantum information
between the electron spin of the NV− center and a photon.

The objective of the research presented here is to optimize the output coupling of photons
from diamond color centers into waveguides and free space to increase the efficiency of
single photon sources and to enable faster single spin read-out. In this paper, we concentrate
on fabrication strategies to sculpt photonic structures in bulk diamond material, which is
expected to give rise to the highest-quality quantum-diamond systems. There are at least two
reasons why bulk diamond is preferred. Firstly, the quality of the emitters is greater due to the
reduced defect and impurity concentration, and increased distance to interfaces that give rise to
dephasing. Secondly, the optical properties are improved due to a lack of interface scattering
and access to the bound modes of the light guiding structures. However, to realize the vision
of monolithic diamond quantum devices requires the generation of a complete nanofabrication
toolkit for diamond and diamond color centres. Here we report on some new techniques towards
realizing this toolkit. Alternatives to monolithic approaches often employ nano-manipulation
techniques to place nano-crystal diamonds into existing photonic crystal structures or onto fiber
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tips [14]–[17]. We also note here other hybrid approaches where NV− centers, either in nano-
diamond or single-crystal diamond, have been coupled to gallium phosphide (GaP) waveguides,
silica micro-spheres and GaP micro-discs [18]–[21].

Two conceptually distinct classes of coupling structures are the subject of this paper. The
first class is non-resonant collecting structures. Solid immersion lenses are in this class and
can deliver surprisingly high collection efficiencies when optimally configured. We discuss the
modeling of such lenses and then present experimental results from lenses fabricated using a
focused ion beam (FIB) etching technique. We also discuss a waveguide realization directly
in single-crystal diamond based on photo-lithography, reactive ion etching (RIE) and FIB
milling [22]. It is relevant to mention that within this category diamond nanowires of 200 nm
width and 2 µm length have recently been produced by electron-beam lithography and RIE in
single-crystal diamond, yielding an improvement of collection efficiency from an NV− center
with respect to bulk diamond [23].

The second class is resonant confining structures. These confine the light close to the
emitter allowing cavity-QED effects to be exploited to direct an emitted photon into a
particular spatial mode. The performance of defect centers can be strongly enhanced through
coupling to an optical micro-cavity. An improvement of the photon emission rate and photon
indistinguishability for NV− can be achieved due to the (coherent) interaction with the
highly localized photon field of the cavity [24]. There have been considerable advances with
hybrid resonator approaches, leveraging mature photonic fabrication approaches. These include
the coupling of NV− centers to moderate-Q silicon nitride cavities [16], to on-chip micro-
cavities [20] and to high-Q micro-cavities [20, 25]. In addition, a theoretical demonstration
of the use of slot waveguides in diamond to highly confine and guide the light in an ultra-small
cavity modal volume [26] shows an alternative, although challenging, path for cavity-QED with
diamond centers.

Monolithic diamond is ultimately more desirable than hybrid approaches, and high-Q
micro-cavities have been designed for diamond [27]–[30]. However, the first experimental
demonstrations with micro-disc resonators [31] and photonic crystal cavities [32] suffered
large scattering losses due to the poly crystal nature of the diamond material used. The
fabrication of high-Q cavities in single-crystal diamond is very challenging because vertical
optical confinement within diamond requires either a three-dimensional etching process or a
method for fabricating thin single-crystal diamond films [33]. We will analyze photonic crystal
structures in diamond and fabrication methods to achieve efficient spin read-out in low-Q
cavities [34].

2. Non-resonant collecting structures

2.1. Solid immersion lenses

Efficient photon collection from color centers in bulk diamond is frustrated by the relatively
high refractive index (2.42) of the material. At the diamond–air interface the angle for total
internal reflection (TIR) is ∼25◦. This means that for a microscope objective with a numerical
aperture (NA) of 0.9, the overall maximum collection efficiency from a planar diamond surface
is a few per cent at best. It is possible to overcome TIR by using nano-crystals; indeed a 50%
increase in collection efficiency over bulk diamond has been measured for NV− emission in
nano-diamonds [35]. However, for scalability in quantum information applications the use of
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(a) (b) (c)

Figure 1. The three cases modeled in our finite-difference time-domain (FDTD)
simulations, as reported in [43]. In all cases the dipole direction is taken to be
in the plane of the slab. (a) Dipole 2.5 µm below the planar diamond surface.
(b) Dipole at the focus of the 5 µm diameter hemisphere. (c) Dipole at the focus
of the 5 µm diameter hemisphere surrounded by a 2 µm wide trench.

bulk material is preferable, particularly given the recent progress towards creating single NV−

centers in bulk diamond with adequate spatial control [36]–[38].
A conceptually simple solution to the problem of TIR is to have the emitter at the focal

point of a hemispherical lens (figure 1(b)). This type of optic is called a solid immersion
lens (SIL). The use of a solid ‘immersion’ material was first demonstrated by Mansfield and
Kino [39] to improve the resolution in a scanning optical microscope system. Apart from
the obvious advantage of not freezing at cryogenic temperatures, solid materials can have a
refractive index far in excess of the best immersion oils. SILs made from high refractive index
glass have been used to improve the efficiency of collecting photoluminescence from quantum
wells [40], and effective NAs as high as 2 have been reported for (GaP) SILs [41], and more
recently a ZrO2 SIL has been coupled to an NV− center [42]. These are impressive results
but, for the purpose of integration, an SIL created directly in diamond is more desirable than a
free-standing optical component.

Below we present the results of simulations for calculating the maximum collection
efficiency achievable for a single NV− center in an integrated diamond SIL. We then discuss the
experimental results achieved with SILs fabricated in polycrystal diamond.

2.1.1. Simulations. To simulate the collection efficiency in an objective lens with NA = 0.9,
we used an FDTD method. We calculated the collection efficiencies for an NV− center located
2.5 µm below a planar surface (figure 1(a)), at the focal point of a hemisphere of 5 µm
diameter (figure 1(b)) and at the focal point of a hemisphere surrounded by a 2 µm wide trench
(figure 1(c)). In all cases the NV− center dipole is oriented parallel to the diamond surface.
The SIL-with-trench case is included as a simple way of approximating an ideal SIL using
FIB fabrication. Simulated collection efficiencies over the spectral range of NV− emission for
the three cases are shown in figure 2. Taking an average over the spectral range, we calculate
collection efficiencies of 5.2, 29.8 and 28.6% for cases 1, 2 and 3, respectively. In the first two
cases, the collection efficiency can be calculated analytically. For a dipole, the intensity at a
point (θ, φ), where θ and φ are defined in the usual way for spherical coordinates, is given
by [44]

I (θ, φ) =
3

8π
[1 − sin2 θ cos2 φ]. (1)
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Figure 2. Wavelength dependence of the collection efficiency (into a 0.9 NA
objective) for the three cases modeled in FDTD simulations.

(a) (b) (c)

Figure 3. Electromagnetic field intensity (red indicates high intensity) calculated
from FDTD simulations [43]. (a) Dipole in a planar slab of diamond. (b) Dipole
at the focus of the hemisphere. (c) Dipole at the focus of the hemisphere with a
trench.

Using Snell’s law to determine the maximum internal angle and integrating over the NA, the
collection efficiency, η, is given by

η =
1

32

15

1 −

√
1 −

(
NA

n

)2
 +

(
1 − cos

[
3 arcsin

(
NA

n

)]) , (2)

where n is 1 with an SIL and 2.42 (the refractive index of diamond) with no SIL. The collection
efficiencies calculated in this way are 5.28 and 32.62%. These are slightly higher than those
obtained in our numerical calculation and this is to be expected for two reasons. First, reflection
at the diamond–air interface is included in the FDTD simulations, but not in the analytic case.
A more subtle effect can be seen in the collection efficiency data and in the electromagnetic
field plots (figure 3) produced by the FDTD simulations. A periodic modulation of the field
intensity in the forward direction is seen when an SIL is present (figures 3(b) and (c)). The
modulation is due to reflections from the SIL boundary acting to modify the dipole emission
in the backward direction. The oscillations in the plot of collection efficiency as a function of
wavelength (figure 2) arise because the collection efficiency is defined as the emission through
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(a) (b)

Figure 4. Change in collection efficiency as the dipole position is moved from
the focal point of the hemisphere. Note that the collection efficiency is a smooth
function of the misalignment and optimal coupling is slightly displaced from the
focal point of the SIL due to the fact that the emitter is a dipole and therefore not
spherically symmetric. (a) Change in collection efficiency as the NV− is moved
along the x- or z-axis with y = 0. (b) Change in collection efficiency as the NV−

is moved along the y-axis for x = z = 0.

the SIL (which remains roughly constant) normalized by the total emission in all directions
(which oscillates). With this in mind, it is worth noting that oscillations in the plot of collection
efficiency as a function of wavelength (figure 2) are real and are a consequence of this quantum
interference effect.

By confirming that our FDTD simulation agrees with Snell’s law in the ideal case of a
dipole positioned exactly at the focal point of the SIL, we can be confident about our model
when considering non-ideal cases where an analytic solution is not available. A comparison
between cases 2 and 3 is useful to check that the simplest structure to fabricate (case 3) results
in a collection efficiency that is close to the ideal case (case 2), so more complicated fabrication
is not necessary. However, what we are most interested in is how the SIL performance varies
when the dipole position deviates from the focal point of the hemisphere. To investigate this
we simulated moving the dipole in all three dimensions (dipole emission is toroidal, so the two
lateral planes are not symmetric). The change in collection efficiency as a function of position
along each axis is shown in figure 4. It should be noted that the lateral directions are assigned
as x and z here, and the longitudinal as y. It can be seen in figure 4(b) that a 1 µm error in
the dipole height, in either direction, reduces the collection efficiency to 25%. Sensitivity to
dipole position is similar in both of the lateral directions (figure 4(a)). In other words, our SIL
fabrication process needs to be accurate to about 1 µm to avoid a significant loss in efficiency.

2.1.2. Fabrication. Fabrication of SILs in ultra-pure single-crystal diamond (Element Six)
was carried out using a 30 keV focused gallium-ion beam system (FEI Strata FIB-201). To
approximate a hemisphere, a series of concentric rings of increasing depth and diameter
were milled. Beam currents ranged from 70 to 11 500 pA, and water-assisted etching was
used to maximize the removal of etch products. Figure 5 shows images of the SILs taken
using secondary electron emission in the FIB system. The ultra-pure diamond material has
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(a) (b)

Figure 5. FIB images of SILs in ultra-pure diamond. (a) An array of 5 µm
diameter SILs fabricated in ultra-pure single-crystal diamond using FIB etching.
(b) Close-up image of one SIL.

an extremely low density of intrinsic fluorescent defects, so SILs fabricated in this material
showed no sign of NV− center emission, but from a visual inspection of the images it is clear
that high-quality hemispherical structures can be made.

2.1.3. Measurement of single-color centers under SILs. To find centers under these structures,
several SILs were also fabricated ‘randomly’ in polycrystalline diamond material with a
moderate density of intrinsic single NV− centers. A few of these SILs were found to contain
a single NV− center and an enhancement factor (compared to single NV− emission from the
planar bulk material) as high as 10 has been measured [43]. This enhancement factor exceeds
that calculated in the FDTD simulations in section 2.1.1, but this is not unexpected since
significant spherical aberrations from bulk diamond will also affect the collection efficiency
and such aberrations are eliminated in the SIL. Figure 6(a) shows a confocal image of a 2.5 µm
radius SIL containing a single NV− center, while figure 6(b) shows a comparison of intensity
saturation curves for a single NV− center under an SIL compared to one in an un-etched part
of the sample clearly showing the enhanced collection. Full details of these results have been
published [43].

Having successfully found single NV− centers by chance, this work has now been extended
to the study of ultra-pure diamond implanted with an ordered array of NV− centers. It has
recently been shown that a single NV− center can be fully characterized and its position marked
to 100 nm precision. Subsequent fabrication of an SIL above the center has been demonstrated
with collection enhancement factor up to six [45].

In a similar way, defects emitting in the near-infrared region formed by the implantation
of chromium have been studied [46, 47] and marked. Preliminary measurements show that the
SIL registering technique can be applied to these samples, and enhanced collection efficiency is
at present under evaluation.
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(a) (b)

Figure 6. (a) Confocal fluorescence image of a single NV− center inside an SIL.
A circle has been added to indicate the perimeter of the SIL. It should be noted
that the color scale has been adjusted so that the bright NV− center is ‘over-
exposed’ in order to make the trench around the SIL clearer. (b) Photon count
rate (corrected for background) as a function of excitation power for an NV−

center inside an SIL and a typical NV− center in the un-etched region.

2.2. Diamond waveguides

To obtain long-range qubit–qubit interaction of NV− centers, high-efficiency photon collection
and routing is needed. Again, focusing on monolithic on-chip solutions, here we show progress
towards diamond waveguides. We discuss the fabrication of ∼200 nm membranes in diamond
and two alternative methods for creating waveguides in monolithic diamond: FIB milling
and RIE. FIB is an excellent method for making one-off devices to prototype and explore
the potential of a material. However, RIE is aligned with the imperatives of scalable e-beam
production processes and is ultimately the method that we see as being the most important for
diamond devices.

Freestanding waveguide structures have been created in thin (3.5 µm) layers of diamond by
combining an implantation process with a single-energy ion irradiation and lift-out technique.
This enabled the fabrication of active structures of the order of 80 µm long with a cross-section
of 3.5 × 2 µm2 [48]. However, these dimensions are substantially larger than those required for
single-mode propagation of NV− zero-phonon line photons (∼200 × 200 nm2 for a square core
diamond–air waveguide). Our ultimate goal is to make single-mode waveguides and cavities
with tailored optical centers incorporated into diamond membranes.

An alternative fabrication process is based on creating two graphitic layers with a thin
diamond membrane (200 nm) sandwiched between them by using two irradiation energies [33].
This procedure allows the desired layer to be at greater depth, where the ion-induced damage
threshold is higher, and it is possible to anneal the diamond at higher temperature without
graphitizing or damaging the layers of interest. However, milling layers with these dimensions
involves overcoming technical challenges. To implement fabrication procedures relying on
milling thin layers of diamond to reach the desired single-mode sizes, we tested methods for
protecting the diamond from stray ion beam damage, as discussed in section 2.2.2.
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Figure 7. TEM image of a single-crystal diamond and amorphous carbon zones.
The sample is implanted and the cap layer and damage zones from 1.80 and
2.00 MeV helium ions are indicated. The 2.00 MeV ions are implanted first, with
the lower energy ions implanted afterwards [33].

An alternative method to FIB milling is RIE and we believe this method has significant
advantages for large-scale manufacture of devices. We fabricated waveguide structures in
HPHT type 1b single-crystal diamond (Sumitomo) using photolithography and RIE, discussed
in section 2.2.3. The combination of these techniques allows the patterning of many long
photonic structures simultaneously, improving scalability. Moreover, this technology can be
realistically pushed to single-mode operation and is more compatible with current opto-
electronic processing.

2.2.1. Fabrication of 200 nm layers in a single-crystal diamond. The lift-out method reported
in [48] cannot be scaled to generate sub-micron layers due to the limits of ion implantation
and cracking due to stress. To overcome these limitations, a double-implantation (sandwich)
technique was developed [33], realizing single-crystal membranes of the order of 200 nm
thickness and 300 × 300 µm2 area. Here we briefly review this method which we believe is
an enabling process for device fabrication.

Our method is based on a lift-off method developed by Parikh et al [49] and utilizes the
increased damage threshold for amorphization available at depth. The critical dose, or damage
threshold, Dc, at the surface has been established as 1 × 1022 vacancies cm−3 [50]. However,
several authors [51, 52] have indicated that this value is higher at depth. Initial results indicated
that the layer of material that converts to graphite-like material was only 100–300 nm upon
annealing at 800 ◦C.

The significance of a narrow layer of damage at depth is demonstrated in figure 7, which
shows the presence of amorphous regions at 3.1 and 3.5 µm from 1.8 and 2.0 MeV helium ions,
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Figure 8. (a) High-resolution TEM image of the as-implanted diamond layer
before annealing and etching. (b) Diffraction image from the diamond membrane
after lift-out, with all spots indexed to single-crystal diamond. Reproduced with
permission from [33]. © Wiley-VCH Verlag GmbH.

respectively. This combination of ion implantations produced a diamond layer of 350 nm, and by
reducing the difference in implantation energies an even thinner layer could be produced. Using
this method [33], we fabricated 660, 330, 250 and 210 nm layers of single-crystal diamond.

The quality of the resulting membrane can be seen in the high-resolution transmission
electron microscopy image of the 〈1, 1, 0〉 lattice planes in figure 8(a), and in the TEM
diffraction pattern for a 330 nm layer that matches the expected pattern for a single-crystal
diamond (figure 8(b)).

Annealing in vacuum at temperatures >1100 ◦C transforms the amorphous layer to
graphite, which becomes a sacrificial layer. By etching this region, an undercut is created that
can provide vertical confinement for photonic applications. As the temperature increases up to
1400 ◦C the interface between the diamond and graphite regions becomes sharper. Investigating
this interface and its properties will be the focus of further study.

2.2.2. FIB milling of waveguiding structures. Milling in diamond layers of the order of 200 nm
thickness poses significant technical challenges that must be solved before this scheme can
be considered a viable and scalable technology. As the layer becomes thinner, and structures
narrower, they are more susceptible to low-level damage from scattered ions during milling.
Indeed all FIB cuts are also vulnerable to widening at the top of the cut, as shown by [53]–[55],
due to sputtering of ions from the base of the cuts being made. In thick layers with large
structures, the degradation caused by these stray ions and broadening of cuts is not so critical.
However, as the structure size decreases, the impact of this unintended damage becomes more
significant and far more care is needed in the fabrication of thin layers than for thicker test
samples. Figures 9(a) and (b) show that as the cross-section of the optical structure approaches
single-mode dimensions, the amount of damaged material below the milled surface (shown in
gray in figure 9(b)) becomes more significant and may render the device non-functional.

To refine fabrication methods approaching these single-mode dimensions, test structures
were fabricated. Layers of single-crystal diamond of the order of 0.9 µm were used as the
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Figure 9. (a) Cross-section of an ideal waveguide. (b) Cross-section of an actual
waveguide, showing FIB damage from vertical cuts ≈20 nm thick and damage
to the surface layer from stray Ga ions during milling 20–50 nm. (c) The bitmap
pattern used to define the milling and area for a tapered waveguide. The black
region is the intended region to be milled, the gray-shaded region is the area
affected by stray ions.

starting point for our investigations. The thin layer is produced from a single-energy, 0.5 MeV
implantation of He ions using similar methods to [56]. We made several waveguide structures
in the resulting layers and report some of our findings below.

Milling of the waveguide structure in the FIB is controlled by using a bitmap to define
milled and non-milled regions. The black region in figure 9(c) shows the bitmap that sharply
defines the area to be milled. However, the milling beam (30 keV gallium) is not as well defined
as the map suggests, and stray ions can affect a large region, shaded gray. In addition, the
electronic blanking used to move or shut off the gallium beam can leave a dusting of ions over
the scanned area, which can be visible in both optical and SEM images. The effect of low
doses of gallium damage on the refractive index of diamond is also being studied [57]. Effects
due to stray ions can be overcome by depositing a sacrificial layer (of platinum, for example)
50–400 nm thick on the surface of the sample. This thickness is sufficient to absorb any stray
ion implantation from the FIB and is easily milled in regions where cuts are intended (i.e. the
black regions of figure 9(c)). While this technique is common in TEM sample preparation [58],
its use for optical devices is uncommon. In our case, complete removal of the platinum layer is
essential for device operation. The platinum layer must be thick enough to stop all unintended
exposure of the membrane surface by gallium ions.

A sacrificial platinum mask also plays a significant role in improving the quality of the
milled structures. The gallium beam mills the material by sputtering ions from the surface. This
can lead to the rounding of edges, or broadening, of the cut at the surface where a right angle
cut would be preferred. This is shown in figure 10, with figure 10(a) showing the ideal FIB cuts
and figure 10(b) the broadening of cuts near the surface due to sputtering. Figure 10(c) shows
a layer of sacrificial platinum thick enough to ensure the absorption of scattered ions (typically
20 nm for 30 keV gallium ions in diamond). By making the sacrificial platinum layer thicker,
200–300 nm, this region of widening of a cut can occur in the platinum layer rather than in
the membrane layer of interest. The depth of the platinum layer can be adjusted to allow for
widening of cuts, which can extend to hundreds of nm depending on the depth of the cut or the
focus of the gallium beam.
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Figure 10. A schematic view of FIB milled cuts. (a) Ideal cuts without
broadening and/or stray ion damage. (b) The broadening of cuts caused by
material being sputtered from the base of the cut. (c) A platinum layer deposited
on the surface of the optical layer to protect regions near the intended cuts. The
damage to the top surface from stray ions of the Gaussian gallium beam is shown
by the horizontal dark gray-shaded areas. (d) After the removal of platinum, the
resultant cuts show significantly less broadening at the surface.

Control of the depth of the platinum layer is especially important for mirror cuts. Mirror
cuts are particularly vulnerable to broadening at the surface, since the material is thinner on
one side at the top of the cut. Broadening at the surface of mirror cuts changes the resulting
angle of the mirror and lowers the surface area of the final mirror as shown in figure 10(b),
reducing the coupling efficiency. While mirror length loss is not significant in thicker layers
with mirrors 3–6 µm long, using a 1 µm input spot size, the resulting loss of intensity for a
200 nm layer where the mirror is of the order of 300 nm long is significant. Therefore the loss of
mirror length in sub-micron layers can render the device ineffective. Once milling is complete,
the sacrificial platinum layer can be removed, revealing cuts that are closer to the ideal case
as shown in figure 10(d). By removing the metal protecting layer, this method is significantly
different from the standard TEM preparation method, and only with its complete removal to
expose the undamaged diamond surface can the full optical properties of the device be realized.

The techniques described here were used to fabricate waveguides with a cross-section
of 0.9 × 1.0 µm2, tapered length 115 µm, with mirrors 135 µm apart. Figure 11(a) shows the
structure in transmitted light, post-FIB milling but with the platinum layer still in place. The
platinum layer is seen as dark since it blocks the light path and the milled cuts are transparent so
that the waveguide can be seen in outline. Figure 11(b) shows the sample after the platinum layer
has been removed by boiling in oxidizing acids. Optical characterization of these waveguides
was performed as described in section 2.2.4.

2.2.3. The RIE fabrication process. In this section, we review in detail some results reported
in [22, 59] obtained by this technique.

The waveguide structures were fabricated in type 1b single-crystal diamond (Sumitomo).
Before the RIE protocol (shown schematically in figure 12) was carried out, a sacrificial
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Figure 11. A waveguide with a cross-section of 0.9 × 1.0 µm2, tapered length
115 µm with mirrors 135 µm apart. (a) A transmitted light image of the
waveguide with the platinum layer (dark) still present and the waveguide visible
inside it. (b) The same structure after the platinum layer has been removed,
showing a multi-mode output on the output mirror, shown in zoom for clarity.

graphitic layer was created as described above, at a depth of 3.5 µm by He ion implantation and
subsequent annealing. The first step in the RIE protocol was to deposit a layer of silica ∼400 nm
thick on the sample using plasma-enhanced chemical vapor deposition. This layer acts as the
mask when etching the diamond [31]. The sample was then dehydration-baked and exposed to
hexamethyldisilazane to promote the adhesion of the photoresist. AZ6112 photoresist was spin-
deposited onto the sample, resulting in a layer approximately 1.2 µm thick at the center. Relative
to standard silicon wafers, diamond single crystals have a small surface area and a large height,
which makes them more difficult to process. When spinning the photoresist onto the sample,
not all of the crystal surface was covered uniformly due to edge effects. The resist pattern was
etched into the silica mask using RIE with CF4 and Ar gases at an RF power of 100 W and a
pressure of 10 Pa. Once the silica mask was etched through, the underlying diamond was then
etched in a predominantly oxygen plasma with a small amount of CHF3 at 200 W and a pressure
of 10 Pa. The etch rate was found to be ∼70 nm min−1, with good selectivity.

Figure 13 shows an optical microscope reflection image of the surface of the diamond
sample once it has gone through the photolithography and RIE process outlined above. The
waveguides shown do not extend to the edges of the crystal, due to the edge effects mentioned
in the preceding paragraph. For standard silicon wafers these regions are usually cleaved off,
but this is not practical when processing diamond. The patternable area was still large enough to
create seven ridge waveguide structures, with lengths ranging from ∼1.5 to 2.5 mm, which can
be seen running horizontally in figure 13. Figures 14(a) and (b) are SEM images of one of these
ridge waveguide structures. Figure 14(a) is a top view and shows that the width at the top of the
ridge is 5.05 µm. The two lighter, slightly charged, sections of the waveguide are the sidewalls
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Figure 12. RIE process flowchart detailing the masking, etching and release of
the final ridge waveguide structure. For monolithic structures, the substrate is
also diamond, and needs to be released from the ridge structure via a sacrificial
layer as detailed in section 2.2. The use of RIE and photo- or e-beam lithography
is essential for the creation of scalable devices.

of the ridge. The areas on the left and right sides of the ridge are the unmasked regions where
the diamond was removed by the RIE process. Raman spectroscopy of these etched regions
showed no change in the Raman shift relative to that of the pristine sample, which indicates
that the quality of the diamond post-RIE is not degraded. The etch depth for this sample was
1.15 µm and an atomic force microscope (AFM) measurement of a 1.1 µm × 1.6 µm surface
area gave an rms roughness of 2.7 nm for the etched region. A larger AFM measurement over
an area of 2 µm × 4 µm gave an rms roughness of 5.0 nm for the top of the ridge. A magnified
section of the left side of the ridge is shown in figure 14(b). The majority of the sidewall shows
a peak-to-peak roughness of less than 10 nm. The roughness is larger at the base of the ridge,
although it is still only ∼20 nm peak-to-peak. This result is comparable to the best sidewall
roughness results obtained for diamond across all combinations of patterning and etching
techniques [60, 61].

As a result of the waveguides not extending to the edges of the diamond crystal, TIR
mirrors, as shown in figure 16, were used to launch light into, and collect light from, the
waveguides [48]. An FIB of 30 keV Ga+ ions was used to make 45◦ mirrors. The FIB was also
used to mill holes through the upper diamond layer to gain access to the 3.5 µm deep sacrificial
graphitic layer. An electrochemical etch was then used to etch the graphite from beneath the
waveguides, leaving an air gap to provide vertical confinement for the waveguiding structure.
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500 um

Figure 13. Optical microscope reflection image of the surface of the
reactive ion-etched sample. Seven ridge waveguide structures can be seen
running horizontally across the sample. The waveguides range in length from
approximately 1.5 to 2.5 mm with a RIE depth of 1.15 µm. Reproduced with
permission from [59]. © Elsevier (2008).

(a)            (b)

Figure 14. (a) Ridge structure etched in a single-crystal diamond. Etch depth =

1.15 µm. (b) Magnified image of the ridge sidewall. Reproduced with permission
from [59]. © Elsevier (2008).

Transmission and reflection optical microscope images of the electrochemically etched sample,
with the FIB milled holes indicated, are shown in figures 15(a) and (b), respectively.

2.2.4. Optical characterization. The system used to optically characterize the RIE-diamond
ridge waveguide structures and the FIB milled structures is shown schematically in figure 16.
A 532 nm laser was focused to a µm-sized spot at the input TIR mirror using a long-
working-distance 50× magnification objective lens. The transmitted light from the output
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(a)

(b)

TIR Mirror      Waveguide  TIR Mirror

Acid etch through FIB milled holes

Etched region
Non-etched region200µm

Figure 15. Optical microscope images of the waveguide with graphite etched
from beneath the structure. (a) A transmission image; (b) a reflection image.
Both the image widths are ∼1 mm [22].

Microscope objective

Diamond substrate

Waveguide

Figure 16. Schematic diagram of the input waveguide coupling and output light-
collection system that uses TIR mirrors [22].

mirror was collected with the same objective lens. This scheme limits the field of view of
the coupling/collection setup to about 100 µm. Therefore, to validate whether optical guidance
could be achieved in RIE-diamond structures, two 45◦ mirrors were milled at either end of
a waveguide with a length of about 80 µm. The dimensions of the core, or ‘ridge’, part of
the waveguide were approximately 5 µm wide × 1.15 µm high. The propagation of light in
the RIE-diamond ridge waveguide device was investigated and the waveguiding results are
shown in figures 17(a)–(d). Light was coupled into the waveguide through the TIR mirror on
the left side of figures 17(a) and (b) and the modal output of the waveguide was observed on the
right-hand side of each image. The multimode intensity pattern observed at the output mirror
clearly indicates that the waveguide is coupling light. Variation of the input beam position is
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(a)          (c)

(b)          (d)

40 um
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    Input            Output

 5 um

Figure 17. Panels (a) and (b) show an 80 µm section of the waveguide with light
coupling in through the left-hand side mirror and the multimode output from the
mirror on the right-hand side. Panels (c) and (d) show a magnified image of the
mode pattern on the output mirror of panels (a) and (b), respectively [22].

responsible for the different mode patterns observed in figures 17(a) and (b). Magnified images
of the waveguide output (figures 17(c) and (d)) appear to show a combination of at least the
fundamental and second-order modes.

3. Resonant confining structures

3.1. Photonic crystals

To take advantage of strong atom–photon coupling using NV−, as required by many of the most
advanced quantum protocols, cavity structures are required. Again, concentrating on monolithic
diamond solutions, photonic crystal cavities are the most natural structures to explore, although
slot cavity structures have also been considered [26]. Zero-phonon emission, at 637 nm,
accounts for only a small fraction (∼4% at liquid helium temperature) of NV− fluorescence,
with the majority of emitted photons falling in the very broad (∼200 nm) phonon-assisted
sideband. By coupling the NV− center to a photonic crystal cavity, spontaneous emission in the
phonon sideband can be suppressed and emission in the zero-phonon line can be enhanced [24].

A photonic crystal structure modulates the propagation of light in a way that is analogous to
a semiconductor crystal modulating the motion of electrons. In both cases a periodic structure
gives rise to ‘band-gap’ behavior, with a photon (electron) being allowed or not allowed to
propagate depending on its wave vector. In photonic crystals the periodicity is comprised
of regions of higher and lower dielectric constants. The period needs to be of the order
of a half-wavelength of the light to be confined, i.e. a few hundred nanometers for visible
wavelengths [62]. The challenges of engineering diamond at this scale are not trivial, as
described in section 2.2.1.

High-Q resonators of different kinds have been fabricated in non-diamond materials and
coupled to NV− emission from nano-diamonds (see for example [16, 20]). Since we are
concerned here with developing monolithic photonics, it is necessary to fabricate cavities in
the diamond itself. It should be noted that photonic crystal cavities have been fabricated in
nano-diamond films and an un-coupled Q-factor as high as 585 at 637 nm was measured [32].
The polycrystal nature of the material used in those demonstrations makes it unsuitable for
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Figure 18. L3 ‘Noda’ photonic crystal cavity.

our purposes due to enhanced scattering and background fluorescence. In this work, we aim to
fabricate photonic crystal cavities in ultra-high-purity type IIa single-crystal diamond (Element
Six) grown by chemical vapor deposition. This material has extremely low levels of nitrogen
(less than 1 ppb), and very few native NV− centers, making it the ideal material for creating
NV− centers in a controlled fashion by implantation and annealing.

Strong coupling and entanglement require high-Q cavities, but a cavity with a more
moderate Q would still be useful. In particular, a scheme for reading out the ground state spin
of an NV− center has been described that requires a Q (before coupling) of only ∼3000 [34].
This scheme exploits the zero-field splitting in the NV− center ground state and uses narrow
band resonant excitation to achieve high-fidelity read-out of the ground state spin with just a
few excitation cycles.

To realize this read-out scheme, we chose a structure known as a ‘Noda’ cavity, illustrated
schematically in figure 18 and described in detail in section 3.1.1. For a complete analysis of
this structure, see [63]. It is sufficient here to note that confinement in the out-of-plane direction
arises from TIR at the crystal–air interface, while in-plane confinement is achieved by exploiting
the photonic band-gap behavior of the structure.

3.1.1. Simulations. As can be seen in figure 18, the photonic crystal consists of a hexagonal
array of air holes in a slab of diamond. To ensure single-mode operation at some wavelength λ, a
slab thickness of ∼λ/4 is required [62]. The cavity itself is formed by three missing holes in the
center. An FDTD method was used to simulate the behavior of the cavity. The parameters that
can be varied to optimize the performance of the cavity are the lattice constant, a, the radius of
the air holes and the slab thickness. The air holes adjacent to the cavity have a different radius
to those in the ‘bulk’ of the photonic crystal. The radius and separation of these ‘modified’
holes are also varied in the optimization routine. The first stage of the simulation process is
to calculate the photonic band-gap structure, shown in figure 19. This gives a starting point for
optimizing the lattice constants and hole radii. Figure 20 shows the electromagnetic field profiles
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Figure 19. Photonic band-gap structure calculated from the simulation.

(a) (b)

Figure 20. Electromagnetic field profiles calculated in FDTD simulations.
(a) View in the plane of the suspended slab. (b) View looking down on the cavity.

calculated in the simulations. From the simulations we calculate the decaying oscillation of the
electromagnetic field inside the cavity (figure 21(a)). Taking the Fourier transform of this signal,
the cavity Q can then be calculated (figure 21(b)). After optimization, the best Q-factor obtained
in the simulations was 3.2 × 104.

3.1.2. Fabrication. Photonic crystal cavities in diamond were fabricated using the FIB
apparatus described in section 2.1.2. In the first fabrication step, the diamond crystal is undercut
by turning side-on and etching to obtain a 200 nm thick slab attached to the bulk. The diamond
is then re-positioned so that the air holes can be etched in this suspended slab (figure 22).
These cavities, etched in ultra-pure diamond material (Element Six), have been scanned in our
confocal microscope system. Enhanced background fluorescence from etch damage is seen in
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(a) (b)

Figure 21. Electromagnetic field amplitude calculated in FDTD simulations.
(a) Time dependence of the electromagnetic field inside the cavity and (b) Fourier
transform of the decay signal.

Figure 22. Photonic crystal fabricated in ultra-high-purity diamond. Image is
taken using secondary electron emission in FIB.

the areas where holes are etched, while reduced background is seen in the cavity region. As yet
we have not seen any narrow spectral features in the background light from the cavity region
which could be associated with high-Q resonances. However, Q-factors below 100 are not ruled
out by data taken to date. We are at present assessing the possibility of making un-etched cavity
regions that are much larger and/or simpler cavity structures.

4. Conclusions

Diamond has much to offer the emerging field of quantum information processing. The presence
of bright color centers with unique quantum properties makes diamond an extremely promising

New Journal of Physics 13 (2011) 025020 (http://www.njp.org/)

http://www.njp.org/


21

platform for solid-state quantum computing using photons as flying qubits. However, the
sculpting of diamond at the nanoscale is exceedingly difficult and relatively immature compared
with more conventional photonic media. We have described the progress towards several
important diamond structures for the collection and routing of fluorescence from NV− centers.
These include SILs, photonic crystal cavities and waveguides. Some of the more important
failure mechanisms associated with milling structures in diamond were discussed, along with
progress towards their mitigation. Most importantly, we outlined some of the progress to
transition diamond fabrication from one-off devices, to taking advantage of industry-standard
techniques for parallel fabrication via photolithography and RIE. Ultimately, leveraging mature
photonics fabrication techniques to develop a full diamond nanofabrication toolkit will be
essential if diamond is to realize its promise as the material of choice for solid-state quantum
information processing.
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