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Abstract
Fast and accurate quantum operations of a single spin in room-temperature
solids are required in many modern scientific areas, for instance in quantum
information, quantum metrology, and magnetometry. However, the accuracy is
limited if the Rabi frequency of the control is comparable with the transition
frequency of the qubit due to the breakdown of the rotating wave approximation
(RWA). We report here an experimental implementation of a control method
based on quantum optimal control theory which does not suffer from such
restriction. We demonstrate the most commonly used single qubit rotations, i.e.
π 2- and π-pulses, beyond the RWA regime with high fidelity

= ±πF 0.95 0.012
exp and = ±πF 0.99 0.016exp , respectively. They are in excel-

lent agreement with the theoretical predictions, =πF 0.95452
theory and

=πF 0.9986theory . Furthermore, we perform two basic magnetic resonance
experiments both in the rotating and the laboratory frames, where we are able to
deliberately ‘switch’ between the frames, to confirm the robustness of our
control method. Our method is general, hence it may immediately find its wide
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applications in magnetic resonance, quantum computing, quantum optics, and
broadband magnetometry.

Keywords: nitrogen-vacancy (NV), optimal control, strong driving

1. Introduction

The ability to manipulate spins very fast allows one to increase the number of qubit operations
before detrimental effects of decoherence take place, and it may further increase the bandwidth
of spin based magnetometers. Optimal control theory (see for instance [1, 2]), provides
powerful tools to work in this regime by finding the optimal way to transform the system from
the initial to the desired state and to synthesize the target unitary gate with high fidelity. Here,
we demonstrate a precisely-controlled ultra-fast (compared to the energy level spitting beyond
rotating wave approximation (RWA)) single electron spin rotation using specially designed
microwave (MW) fields without resorting to the standard RWA condition. To achieve this we
employ an optimal control method, namely chopped random basis (CRAB) quantum
optimization algorithm [3, 4]. It is used to numerically design and optimize our microwave
control (see appendix A for further detailed information).

We implement our method using an electron spin associated with a single nitrogen-
vacancy (NV) centre in diamond as a test bed. The centre shows remarkable physical properties:
optical spin initialization and readout at room temperature [5], coherent spin control via MW
fields [6], and long spin coherence time up to several milliseconds [7]. This NV system is a
promising candidate for a nanoscale ultra-sensitive magnetometer [8–11], and for a solid state
quantum processor [12, 13]. Strongly driven dynamics (beyond RWA) of two level systems in
different cases has been theoretically analysed previously [14–19] and has been experimentally
realized with NV using conventional pulses [20], where fast flipping of the NVʼs electron spin
has been demonstrated.

2. The system

The NV consists of a substitutional nitrogen atom and an adjacent vacancy with a triplet ground
state (S = 1) and a strong optical transition, enabling the detection of single centres. Its
fluorescence depends on the electron spin state, allowing one to perform coherent single spin
control [5, 6]. The Hamiltonian of the NVʼs ground state in the presence of MW control Γ t( )x

can be written as

 π ω Γ= + + DS S t Sˆ (2 ) ˆ ˆ 2 ( ) ˆ , (1)z z z x x
2

where ≈D 2.87 GHz is the NVʼs electron zero-field splitting, Ŝx and Ŝz are the x and z
components of the electron spin operator and ω μ= g Bz B 0 is the Zeeman splitting due to a
constant magnetic field B0 along the NV axis (z-axis) with g the electron gyromagnetic ratio and
μB the Bohr magneton [21]. For the description of our experiments the Hamiltonian has to be
written in the lab frame since the control amplitude is comparable to the Larmor frequency of
the spin Γ ω∼tmax {| ( )|}x L (where ω ω= −DL z), i.e. the counter-propagating term of the
control can not be neglected [20, 22]. To fulfill this condition beyond the RWA and to
approximate a two-level spin system of = 〉m| 0s and = − 〉m| 1s , we apply a magnetic field
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B0 = 1017.3G (101.73mT) and set the working transition frequency ω = 30L MHz
(figure 1(a)). B0 is aligned along the NV crystal axis in order to suppress mixing between
the 〉|0 and 〉|1 states.

3. Experiments

We begin by measuring Rabi oscillations at different MW amplitudes and observe the spin
dynamics (figure 1(c)). When the driving field Ω ω< 2L the system is in the RWA regime and
a nice harmonic signal is obtained (figure 1(c), lower right inset). However, when Ω ω> 2L

the signal becomes anharmonic as shown in figure 1(c) (upper left inset) and the precise control

Figure 1. (a) Energy of the 〉m| s states of the NV centre as a function of the applied
static magnetic field B0. ω = 30L MHz is the frequency of the transition we used in our
experiments. (b) Schematic representation of the pulse sequences for the density matrix
tomography. At the beginning we apply a laser pulse to polarize the NV in = 〉m| 0s and
at the end again to read out the state of the electron spin. The polarization is followed by
the optimized π-pulse (CRAB-π, top) or π 2-pulse (CRAB-π 2, bottom). The
tomography is performed by applying π 2-pulses along the x- and y-axis of the
rotating frame. (c) Rabi frequency as a function of the amplitude of the AWG signal.
The circles denote the region where harmonic behaviour is observed as shown in the
lower right inset. The red line is a linear fit, its dashed part shows the region where the
spin dynamics is anharmonic. The upper left inset shows a typical signal in this region.
We chose the MW amplitude which corresponds to the Rabi frequency of
Ω = 30 MHz.
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over the spin rotations is not trivial. Moreover, often the spin is not flipped within certain time
as it can be seen from the upper left inset of figure 1(c), where the normalized fluorescence does
not drop to zero and the = − 〉m| 1s state is not reached.

To perform a desired transformation of the spin state ψ 〉t| ( ) , which follows the
Schrödinger equation, ψ ψ〉 = − 〉t t td| ( ) d i ˆ | ( ) (assumingℏ = 1), we optimally engineer the
time dependence of the control Γ t( )x , such that at the final time T the state fidelity between the
final spin state ψ 〉T| ( ) and the target ψ 〉| T is maximized (see also appendix A). The fidelity F is
defined as [23]

ψ ρ ψ=F (2)target CRAB target

with ψtarget and ρCRAB being respectively the target state and the state expected after the CRAB
pulse. Here, we used CRAB controls to implement the two most important single qubit
rotations: flipping the qubit (π pulse) and creating a superposition between the qubit states
(π 2 pulse). The experimental realization of these rotations is shown schematically in figure 1(b)
while figure 2 shows the calculated trajectories of the spin during the CRAB-π and −π/2 pulses.

We set the pulse lengths =πT 15.4 ns and =πT 7.72 ns, shorter than
Ω= =π

−T (2 ) 16.67Rabi 1 ns and Ω= =π
−T (4 ) 8.332

Rabi 1 , where Ω = 30 MHz is the extrapolated
Rabi frequency. It is important to note that the latter cannot be used for qubit rotations due to
the breakdown of the RWA (see figure 1). The shortest possible pulse length for the π pulse is

given by the bang–bang condition π πω πΩ= + =πT ( ) (2 ) 14.9L
Bang 2 2 ns [24]. We were not

able to approach closer to this limit due to the limited bandwidth and gain curve of the amplifier
(refer to appendix B).

We performed a density matrix tomography in order to determine the quality of the
optimized pulses. Both off-diagonal elements have been measured by applying a low power
(Ω = 8 MHz) π 2 pulse along the x- and y-axis of the rotating frame, followed by a laser pulse
for read out (see figure 1(b)). To measure the diagonal elements the MW pulses have been

Figure 2. (left) The trajectory of the spin magnetization (blue curve) during the
application of the CRAB-π pulse. The initial state is = 〉m| 0s (red-dashed arrow) and
the target state is = − 〉m| 1s (red-solid arrow). (right) After the CRAB-π 2, the spin
magnetization lays in the xy plane of the lab frame, parallel to the x-axis. Then, it rotates
around the z-axis with an angular velocity ωL (Larmor frequency), acquiring a
phase ϕ = ω−e ti L .
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Figure 3. Free induction decays. (a) FID measured by using two CRAB-π 2 pulses. The
inset shows the first 160 ns of the signal (markers) and the calculated fidelity with
respect to the = 〉m| 0s state (red solid line, see also text). (b) A combination of a CRAB-
π 2 pulse and a low power π 2 pulse, where the phase of the latter is fixed for all values
of τ (blue curve) and adjusted as ϕ = ω−e ti L (red markers), see also the main text. The
oscillations with ≈ 2 MHz come from a weakly coupled 13C. (c) FID measured by using
low power MW pulses (within RWA), where the phase of the second π 2 pulse is not in
phase with the first pulse (blue markers). If both pulses are kept in phase then the
experiment is performed in the rotating frame (redmarkers). The solid lines are fits to
the data. The decay time here is shorter than in the above experiments because the
sample is different.

5
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omitted. After the CRAB-π pulse, the theoretically expected and the experimentally measured
density matrices are

⎜ ⎟
⎛
⎝

⎞
⎠ρ ρ= = −

+
π π( )0 0

0 1
, 0.01 0.16 0.15i

0.16 0.15i 0.99
.theory exp

After the application of optimized CRAB-π 2 pulse, we expect

⎜ ⎟
⎛
⎝

⎞
⎠ρ =π 0.5 0.5

0.5 0.5
.theory

2

This is the state of the system expected directly after the MW pulse. However, due to limited
time resolution of our apparatus, the measurement can be performed only after some dead time.
We set this time to =t 100evol ns during which the spin rotates in the xy plane of the lab frame
and acquires a phase ϕ = ω−e ti L evol (see figure 2, right). The density matrix after tevol is then

⎜ ⎟
⎛
⎝

⎞
⎠ρ = −

+
π 0.5 0.48 0.14i

0.48 0.14i 0.5
.theory

2

From the tomography, we obtain

⎜ ⎟
⎛
⎝

⎞
⎠ρ = −

+
π 0.57 0.42 0.02i

0.42 0.02i 0.43
.exp

2

The expected fidelities of the CRAB pulses are =πF 0.9986theory and =πF 0.9545theory
2 ,

whilst from the experiment we obtain = ±πF (0.993 0.016)exp and = ±πF (0.947 0.007)exp
2 . We

find an excellent agreement between the theoretical prediction and the experimental result. The
theoretical values are lower than 1 due to the constrains set on the pulse duration. If the pulse
length is increased, even higher numerical fidelities can be achieved [25]. The deviation from
the prediction can be explained by distortion of the pulse shape, mainly due to the limited
bandwidth of the MW amplifier and measurement error (see appendix C for details).

The pulses we have developed in this study are important not only for quantum
information processing, but also for most of the pulsed nuclear magnetic resonance (NMR) and
electron spin resonance (ESR) experiments. They performed the desired spin rotations (π or π 2
as we demonstrate below) up to a global phase factor no matter what the initial states is,
although they were optimized for a = 〉m| 0s starting state. One of the most important NMR
(and ESR) pulse sequences consists of a single π 2 pulse, where the spin magnetization is
rotated from the z-axis to the xy plane in the rotating frame. The spin then precesses and can be
detected by the NMR detector thus giving a free induction decay (FID) signal. The Fourier
transform of the latter is the spectrum of the sample [26, 27]. This experiment has been already
implemented using NV and can be applied for detecting dc magnetic fields [28–30]. Here, we
show that we can perform it both in the lab and in the rotating frame by using both CRAB and
conventional rectangular pulses. The main difference here compared to previously reported
studies, e.g. [30–32], is that we can perform these experiments beyond the RWA.

All sequences begin with a laser pulse for polarising the NV (figure 3(a)). Then we apply a
CRAB-π 2 pulse, which aligns the spin magnetization along the x-axis of the lab frame. After a
free evolution time τ we apply another CRAB-π 2 pulse to rotate the spin back to the z-axis and
we then read out the spin state. The signal oscillates with the Larmor frequency ωL (figure 3(a),
see also figure 2, right). Here, we measure the signal in the laboratory frame. Now, if we replace
the second CRAB-π 2 pulse with a low power rectangular π 2 pulse (here ω = 4193L MHz and

6
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Figure 4. (a) Hahn echo measured with CRAB-pulses. The signal oscillates with the
Larmor frequency (in this caseω = 120L MHz and the extrapolated Rabi frequency
Ω = 100 MHz), as shown in the three insets. (b) CRAB-Hahn echo pulse sequence. (c)
Hahn echo signal obtained with rectangular pulses in RWA when the first MW pulse is
not kept in phase with the last two pulses (blue curve) The signal again oscillates with
(in this case) ω = 71.3L MHz. The same experiment, here all pulses are kept in phase
(red markers). The solid red line is a Gaussian fit to the data. (d) Hahn echo pulse
sequence with rectangular pulses where the phase ϕ of the pulses is properly adjusted.
(See text for more details.)
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Ω = 48 MHz) and keep its phase fixed for all τ (equivalent to having the B1 parallel to y), again
the FID signal oscillates with ωL (figure 3(b), blue curve). However, if we set the phase of the
second pulse to ϕ = ω−e ti L , we can ‘follow’ the magnetization in the equatorial plane of the
Bloch sphere (figure 2, right) and the measurement is performed in the rotating frame and the
oscillations at ωL disappear (figure 3(b), red markers).

The same experiment can be performed using two rectangular pulses with low MW
amplitude (within the RWA) where again the phase of the second pulse is kept constant. In this
case the experiment is run in the laboratory frame and the FID again oscillates with the Larmor
frequency (figure 3(c), blue markers). If the phase of the MW is not the same for different τ,
then we obtain the typical FID in the rotating frame as shown in figure 3(c) (red markers).

Another important sequence is the Hahn echo [33], which has found wide application in
NMR and ESR. It is the basis of all dynamical decoupling techniques since all static
inhomogeneous shifts (and fluctuations on the time scale of the coherence time T2) are
effectively canceled out [26]. It has been implemented with NV [6] and also for NV based ac
magnetometry [7, 9]. The Hahn echo pulse sequence is depicted in figure 4(b). After a CRAB-
π 2 pulse and a free evolution time τ0 a CRAB-π pulse is applied. After a time τ the spin state is
rotated to the z-axis by a CRAB-π 2 pulse and then it is read out by a laser pulse. The spin
signal oscillates with the Larmor frequency of the NV transition (in this case ω = 120L MHz)
as shown in figure 4(a) since the experiment is performed in the lab frame. If we use rectangular
pulses in the rotating frame we obtain the envelope of the echo without the oscillations at ωL

(figure 4(c), red markers). However, we can again ‘switch’ to the lab frame by adjusting the
phase ϕ of the last MW pulse (figure 4(c), blue curve). ESR experiments in the lab frame with
low power MW pulses have been already reported [34, 35], but the ‘switching’ between the two
frames in the strong driving regime has not been yet demonstrated. These results demonstrate
that we can perform ‘textbook’ magnetic resonance experiments using the optimally designed
pulses.

4. Conclusion

In summary, we have developed a novel technique based on optimal control for precise spin
qubit rotations in the ultra fast driving regime where standard pulses are not applicable. We
design our qubit transformations by using the quantum optimization algorithm CRAB and find
an excellent agreement with the experimental implementation. Moreover, we show even when
the RWA breaks down the pulses developed here can be used for magnetic resonance
experiments. Additionally we demonstrate on demand ‘switching’ between the rotating and the
lab frame, using both CRAB and conventional (low power) pulses. This provides a precise
control over the spin evolution and can be easily transferred to any other two level system, e.g.
trapped atoms, trapped ions, quantum dots or superconducting qubits. Our results can find wide
application in quantum computation and broadband magnetometry.
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Appendix A. CRAB microwave control

In this section we shortly review the theoretical background of the CRAB method in the context
of our current work, and furthermore describe the optimization procedures and the numerical
results.

We recall the ground state Hamiltonian of the single electron NV spin in the presence of a
single MW control Γ t( )x , as discussed in the manuscript

 π ω Γ= + + DS S t Sˆ (2 ) ˆ ˆ 2 ( ) ˆ . (A.1)z z z x x
2

The CRAB method designs the control Γ t( )x by correcting an initial guess Γ t( )0 with an
optimized continuous function g(t), following Γ Γ= ×t t g t( ) ( ) ( )x 0 [3, 4]. We use here a simple
constant initial guess Γ =t g( )0 0. Following [4], the correcting function g(t) is expanded into a
Fourier-like basis function

∑
λ

ω ω= +
=

{ }g t
N t

a t b t( )
1

2 ( )
sin( ) cos( ) , (A.2)

n

N

n n n n

1

where N denotes a number of basis expansion having N-randomized discrete frequencies. It is
noteworthy to state that the range of frequencies ω ω( , )N1 directly corresponds to the real
bandwidth of the apparatus. Therefore, we can pre-set in advance the frequency range for
numerical optimization to meet the experimental limitations, e.g. the amplifierʼs or arbitrary
waveform generatorʼs working bandwidth. The additional function λ t( ), is used to impose the
control boundary such that Γ =t( ) 0x at the initial time t = 0, and the final time T. Here, we
choose the bounding function λ = − −t h h t h( ) ( ( ) )p p p , where =h T 2. Using this function
we can also qualitatively vary the rising and falling times of the MW control by adjusting the
even-numbered parameter p.

Our optimization objective is to find the set of CRAB parameters { ω⃗ ⃗ ⃗a b, ,n n n}, which
minimizes the figure of merit,  Γ= − +f c t(1 ) max {| ( )|}f x , where the quantity

ψ ψ= 〈 〉f T| ( ) | |T
2 is the fidelity of the final state ψ 〉T| ( ) , against the desired state ψ 〉| T . A

dimensionless parameter cf is incorporated in the figure of merit to limit the control amplitude
during optimization. We employ the direct search simplex (Nelder–Mead) algorithm to find the
optimal CRAB parameters.

The numerical optimization is initiated by setting some parameters obtained from the
experimental preparations and apparatus calibrations: the measured Larmor transition ωL, the
maximum control amplitude Γ Ω=tmax {| ( )|}x , and the CRAB frequency range. The control
time is fixed (the same as the desired rotation time) to be faster than the extrapolated rotation
time if the RWA would be valid, e.g. for the spin π-rotation we have <T 1/2Ω−1, where Ω is the
extrapolated Rabi frequency (see figure 1(c)). However, the π-rotation time in our case is
limited by the minimum time of the theoretically proposed optimal bang–bang control,

π πω πΩ= +πT ( ) (2 )L
Bang 2 2 , where the control Γ t( )x takes only a constant value of Ω± for a

certain time interval [24]. To obtain the optimized pulse for one target rotation, we do the
following steps:

(1) Perform the parallel simplex search algorithm with an S number of random initial values of
the CRAB parameters for j small positive real numbers of c{ }f

j , and k positive small
integers N{ }k , typically ∈c{ } (0.01, 0.5)f

j and ∈N{ } (3, 7)k .

9
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(2) Obtain from step 1, × ×S j k( ) sets of CRAB parameters, than construct × ×S j k( )
numbers of control pulses Γ t{ ( )}x .

(3) Investigate the numerical values of  and Γ tmax {| ( )|}x for each pulse, and pick the best
one out of × ×S j k( ) pulses which satisfies  κ⩽ f and Γ κ⩽ Γtmax {| ( )|}x . The preset
quantities κf and κΓ are the numerical infidelity and the maximum control amplitude,
respectively. If the best pulse can not be obtained, return to step 1 with different values of
c{ }f

j and increase N{ }k .

The actual numerical calculations were carried out on the bwGRiD cluster where we
utilized its multi-nodes multi-cores (eight cores per node) computational features to run the
parallel Nelder–Mead searches that corresponds to various experimental parameters and random
initial values. To find a single parallel sample in one-core, i. e. one set of CRAB optimized
parameters, the typical computational time required to meet the experimentally acceptable
fidelity is approximately less than 30 min. This allows one to perform a single optimization run
in just a decent commercial personal computer. Hence, it is feasible in the future to apply our
numerical CRAB optimization in standard close-loop control system involving directly the
control apparatuses. For both cases of π-rotation and π 2-rotation we set the parameters as the
following: N = 5, S = 30, ω Γ= = =g tmax {| ( )|} 30L x0 MHz, and ω ∈ (10 100)n MHz. We
present the best obtained CRAB parameters for each rotation in table A.1 , while the
corresponding MW pulses are shown in figure B.1.

Appendix B. Experimental setup and pulse shapes

The pulses optimized by the CRAB algorithm is a superposition of ten periodic functions. In the
experiment, these pulses are synthesized directly by an arbitrary waveform generator (AWG,
TektronixAWG7122C) with a sampling rate of 24GS s−1 and then sent to an amplifier (Mini-
Circuits, ZHL-42W-SMA). The pulse shapes measured via an oscilloscope (Tektronix,
TDS6804B) are displayed in figure B.1.

Optical measurements were obtained via a self-made confocal microscope, the AWG
triggered both the acousto-optic modulator for laser pulse control and the photon-count card
(FastComtec P7887).

Table A.1. The optimal CRAB parameters obtained via the Nelder–Mead simplex
algorithm for π- and π 2-rotations. The corresponding MW-CRAB pulses are shown in
figure B.1.

π-rotation π 2-rotation

T = 15.4071 ns, p = 60, cf = 0.35 T = 7.7036 ns, p = 38, cf = 0.23

an bn ωn (GHz) an bn ωn (GHz)

= −a 5.48651 =b 0.28121 ω = 0.02011 =a 2.11231 =b 9.62051 ω = 0.01491

=a 2.48032 =b 1.88232 ω = 0.04152 = −a 5.59732 = −b 28.73652 ω = 0.04012

= −a 0.54043 =b 5.85333 ω = 0.05133 = −a 9.75773 = −b 3.94253 ω = 0.04643

=a 1.56594 = −b 2.21234 ω = 0.06874 =a 26.34644 =b 5.42674 ω = 0.06644

=a 1.46735 =b 3.64695 ω = 0.08925 = −a 10.42125 =b 7.24455 ω = 0.09095

10
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Appendix C. State tomography

In order to determine the fidelity of the final state in respect to the target state we performed a
state tomography. For this purpose we evaluated all three components of the Bloch vector. The
z-component is measured directly from the fluorescence level. The x- and y-components have to
be projected into the measurable z-component. This is done by applying a MW with different
phases and measure Rabi oscillations or in other words: rotate the Bloch vector around the x-
axis to determine the y-component and vice versa, as shown in figure C.1.

The density matrix of a single qubit can be written as

⎛
⎝⎜

⎞
⎠⎟ρ =

+ +
− −

z x y
x y z

1
2

1 i
i 1

. (C.1)

In this definition, x y, and z have values between −1 and 1. The first point of the measurements
Rabi (1)x and Rabi (1)y , where no MW was applied, can be understood as the z-component. The
three components of the Bloch vector are calculated following

Figure B.1. Pulse Shapes. (a) Oscilloscope measurement of the signal after the diamond
sample with the standard sinusoidal microwave after 100 ns delay to measure Rabi
oscillations for the state tomography. (b) CRAB-π pulse (blue) in comparison to
numerical pulse (red). (c) CRAB-π/2 pulse (blue) in comparison to numerical
pulse (red).

Figure C.1. State tomography. (a) The state is characterized by performing Rabi
oscillations by rotating the spin around the x- and y-axis. The z-component can be
observed by measurement without application of a microwave. With the amplitude and
the z-component the x- and y-component can be calculated simply using the
Pythagorean theorem. (b) Measurement data of the state tomography after the
CRAB-π 2-pulse.
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= + − = + −z 2 · Rabi (1) Rabi (1) 1 Rabi (1) Rabi (1) 1, (C.2)x y x y

= −( )y z2Amp , (C.3)y

2
2

= −( )x z2Amp , (C.4)x
2 2

where x y, and z are the three components of the Bloch vector and Ampx y, are the amplitudes of
the Rabi oscillations rotating around the y, x-axis respectively. In formula C.3 and C.4, values
for x and y were set to 0 if the uncertainty was greater than the actual value. Another possibility
to obtain the x- and y-component is to calculate πRabi ( 2)x and πRabi ( 2)y respectively.

To normalize the data we performed an additional, bare Rabi measurement. The
normalization is done by = − −y A ARabi (1) (rawdata(1) ( )) 2x 0 , where A is the amplitude
and y0 is the offset of the normalization measurement.

In order to calculate the fidelity between the experimental state ρ and the target state Ψ〉|
the definition for pure states is used: Ψ ρ Ψ= 〈 〉F | | which in this case is equivalent to the
general definition σ ρ σ=F tr [23].

Due to experimental limitations we had to wait for 100 ns between the CRAB-pulse and
the Rabi measurement, hence the target state after the time evolution on the x y, plane becomes

Ψ Ψ= σ ω−t( ) e (0) , (C.5)ti
2 z L

with the Pauli matrix σz and the Larmor frequency ωL. For the error calculation of the fidelity
the noise of the Poisson distributed photon collection and fitting errors were taken into account.
The error was determined by using the general law of error propagation [36]
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